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Abstract

Genetic alterations such as point mutations, chromosomal rearrangements, modification of DNA methylation and chromosome
aberrations accumulate during the lifetime of an organism. They can be caused by intrinsic errors in the DNA replication and repair
as well as by external factors such as exposure to mutagenic substances or radiation. The main purpose of the present work is to
begin an exploration of the stochastic nature of non-equilibrium DNA alteration caused by events such as tautomeric shifts. This
is done by modeling the genetic DNA code chain as a sequence of DNA-bit values (‘1’ for normal bases and ‘−1’ for abnormal
bases). We observe the number of DNA-bit changes resulting from the random point mutation process which, in the model, is being
induced by a stochastic Brownian mutagen (BM) as it diffuses through the DNA-bit systems. Using both an analytical and Monte
Carlo (MC) simulation techniques, we observe the local and global number of DNA-bit changes. It is found that in 1D, the local
DNA-bit density behaves like 1/

√
t, the global total number of the switched (abnormal) DNA-bit increases as

√
t. The probability

distribution P(b, 0, t) of b(0, t) is log–normal. It is also found that when the number of mutagens is increased, the number of the

total abnormal DNA-bits does not grow linearly with the number of mutagens. All analytic results are in good agreement with the
simulation results.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Genetic alterations such as point mutations, chromo-

somal rearrangements, unequal crossing over, loss of
heterozygosity, modification of DNA methylation and
chromosome aberrations accumulate during the lifetime
of the organism. They are caused by intrinsic errors in the

ed.
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plate chain, or in the deoxyribonucleotide being added
by the DNA polymerase. Since the shifted form retains
its rare mis-matching structure for only a brief period, the
next replication cycle will most likely find itself reverted
D. Triampo et al. / Bio

NA replication and repair as well as by external factors
uch as exposure to mutagenic substances or radiation.
ince the discovery that the configuration of a DNA or
NA molecule is a double helix (Watson et al., 1988),
olecular biologists and geneticists have been study-

ng the crucial role of DNA in the genome organization.
nce it was recognized that DNA is the informational

ctive chemical component of essentially all genetic
aterials, it was assumed that this macromolecule must

e extraordinarily stable in order to maintain the degree
f fidelity required of a master blueprint.

It was something of a surprise to learn that the pri-
ary structure of DNA is quite dynamic and subject

o constant changes. For example, gene transposition
s a well-established phenomenon in prokaryotic and
ukaryotic cells (Finnegan, 1990; Kleckner, 1981). In
ddition, DNA is subject to alteration in the chemistry
r sequence of individual nucleotides (Lindahl, 1993;
oberts, 1978; Singer and Kusmierek, 1982). Many of

hese changes arise as a consequence of errors introduced
uring replication, recombination and repairing itself.
ther basic alterations arise from the inherent instabil-

ty of specific chemical bonds that constitute the normal
hemistry of nucleotides under physiological conditions
f temperature and pH. Finally, the DNA of living cells
eacts to a variety of chemical compounds and a smaller
umber of physical agents, many of which are present
n the environment. Each of these modifications of the

olecular structure of genetic material is appropriately
onsidered to be a DNA damage. DNA damages can be
lassified into two major classes, spontaneous and envi-
onmental. However, in some cases the actual chemical
hanges in DNA that occur “spontaneously” are indistin-
uishable from those brought about through interaction
ith certain environmental agents. The term “sponta-
eous” may merely imply that we have not identified a
articular environmental culprit. Changes in the DNA
equence may result from processes such as insertion,
eletion, transversion and transition. For example, the
enetic instability characteristic of cancer cells may be
ue, in part, to mutations in genes whose products nor-
ally function to ensure DNA integrity. DNA replication

n normal human cells is an extremely accurate process.
uring the cell division cycle, copy errors occur with
robabilities less than 10−9 to 10−10 per nucleotide. In
ontrast, the malignant cells that constitute cancer tis-
ues are markedly heterogeneous and exhibit alterations
n nucleotide sequence of DNA.
As initially proposed by Delbruck et al. (1935) and
atson and Crick (1953), spontaneous mutations are

nitiated by quantum jump events such as tautomeric
hifts in single protons of DNA bases. Even what may
s 90 (2007) 870–880 871

be the most common of spontaneous mutations involves
a chemical mechanism which must involve quantum
uncertainty, since it occurs when individual electrons
shift their positions to produce “tautomers”.

Specifically, nucleotide transitions can be induced
by exposure to endogeneous and exogeneous muta-
gens (agents causing genetic changes) such as chemical
carcinogens. However, not all mutagens are carcino-
genic. The nucleotide transitions are the interchange of
bases of the same shape, e.g., the purine bases transi-
tion, C(cytosine) ↔ T(thymine) or the pyrimidine bases
transitions, A(adenine) ↔ G(guanine). One of the mech-
anisms that can cause the transition is the shift of the
positions of the electrons for the bases to become a tran-
sient form (known in organic chemistry as a tautomeric
shift).

In standard complementary pairing, G pairs with C
and A with T. Keto-enol tautomeric shift leads to non-
standard form of G: G ↔ G* resulting in G* pairing with
T. Amino-imino tautomeric shift leads to a non-standard
form of A: A ↔ A* resulting in A* pairing with C. Non-
standard bases alter the pairing specificity, i.e., modified
purine pairs with the wrong pyrimidine and modified
pyrimidine pairs with the wrong purine. Fig. 1 shows
an example of the keto-enol tautomeric shift that results
in a transition mutation of the complementary strand.
Consider the pairing of ATGC with TACG: Let G in the
first strand undergo a tautomeric shift to G*. The com-
plementary strand that is generated would be TATG, not
TACG. This would be a transition from C ↔ T. To com-
plete the process of producing a mutation, a tautomeric
shift must take place during replication, either in the tem-
Fig. 1. A diagram of the keto-enol tautomeric shift that results in a
transition mutation of the complementary strand.
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to its normal form, and the polymerase will pair it with
its normal mate. Thus, in two cycles of replication, an
A–T pair is changed to a G–C pair, or vice versa. This,
in turn, can often result in a change in a triplet code,
leading to an amino acid substitution in a protein, and a
modification of some visible phenotypic property of the
organism.

Although it has never been demonstrated experimen-
tally that rare tautomers are responsible for spontaneous
mutations, subsequent experimental and theoretical
investigations (Leszczynski, 1999; Radchenko et al.,
1983) seem to confirm the essential correctness of this
postulate. It should be remarked that Neo–Darwinian
evolutionary theory is founded on the principle that
mutations occur randomly, and the direction of evolu-
tionary change is provided by selection for advantageous
mutations. However, the central tenet, that mutations
occur randomly, has recently been challenged by the
finding of the phenomenon termed adaptive or directed
mutation.

There have been a few approaches used to investi-
gate this mutation complex process ranging from wet
lab research to highly complicated computational cal-
culations. Theoretical models fall into two very broad
classes: deterministic and stochastic models. Determin-
istic models attempt to model or predict the average
behavior of systems according to some precise rules.
In contrast, stochastic models describe the probability
of very specific behaviors of individuals rather than
average behavior of the population. Stochasticity has
been recognized in the biology field of research and
modeling as the description of life systems (Kurakin,
2006). It had appeared as general principles underly-
ing the dynamics and organization of biological systems
at all scales: gene expression (Kurakin, 2005), enzymes
(Xie and Lu, 1999), self-organization of macromolecular
complexes mediating transcription (Dundr et al., 2002;
Kimura et al., 2002), and DNA repair (Essers et al., 2002;
Hoogstraten et al., 2002).

Because a gene or DNA is a molecule, the statisti-
cal fluctuations of atomic or molecular scale cannot be
avoided. Mathematical modeling of genetic instability
has led to considerable insight into human tumorige-
nesis. One study of the mutational spectrum gave the
type, location and frequency of DNA changes in a par-
ticular gene (Hussain and Harris, 1999). Claytong and
Robertson (1955) proposed a random walk mutation
model as a model for genetic analysis. It was later pro-

posed explicitly by Crowj and Kimura (1964), by Kimura
(1965), and subsequently popularized by Lander (1975).
Zeng and Cockerham (1993) proposed a more general
mutation model, called the regression mutation model.
s 90 (2007) 870–880

This model regards the regression coefficient of the effect
of an allele after mutation on the effect of the allele before
mutation as a parameter.

In 1989, Nowak and Schuster (1989) investigated
error thresholds in finite populations. They determined
that, at error rates above the critical value, the quasis-
pecies ceases to be localized in sequence space and start
to drift randomly. Sole’ and Deisboeck (2004) used a
quasispecies model to investigate the error threshold in
cancer cells. They demonstrated that, once the thresh-
old is reached, the highly unstable cancer cells become
unable to maintain their genetic information, leading to
a decrease in the velocity of tumor growth. The origi-
nal quasispecies model assumes that genomes replicate
conservatively, i.e., each single-stranded genome repli-
cates by producing a new, possibly error-prone, single
stranded copy without affecting the original. In this form,
the quasispecies model predicts the existence of an error
catastrophe or “error threshold”, a threshold mutation
rate above which no viable species can exist. This thresh-
old depends on the replication rate of the fittest sequence,
the master sequence (Komarova et al., 2002) utilize a
stochastic model to evaluate the rate of formation of
dysplastic crypts by chromosomal instability (CIN) and
microsatellite instability (MIN) mechanisms in sporadic
colon cancer to obtain broad qualitative agreement with
the relative importance of CIN and MIN and the number
of polyps generated under these conditions.

The main purpose of the present work is to begin an
exploration of the stochastic nature of non-equilibrium
DNA alteration caused by events such as tautomeric
shifts in a theoretical DNA-bit alteration model This
is done by modeling the genetic DNA (or RNA) code
chain as a sequence of DNA-bit values (‘1’ for normal
bases and ‘−1’ for abnormal bases). This is similar to
what is used in computers or electronics. We observe
the number of DNA-bit changes resulting from the
random point mutation process (to mimic tautomeric
shifts) which is being induced by a stochastic Brown-
ian mutagen (BM) as it diffuses through the DNA-bit
systems. We will make analytic predictions and simu-
late the non-equilibrium process using the Monte Carlo
(MC) method. To the best of our knowledge, there has
not been a stochastic approach to investigate the non-
equilibrium stochastic kinetics of DNA-alteration. This
work therefore represents a new avenue for studying
non-equilibrium mutation.
2. Theoretical model and analytic predictions

As mentioned, earlier theoretical models fall into two
very broad classes: deterministic and stochastic models.
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tochastic models evaluate the entire probability distri-
ution of random individual events. This kind of model
s potentially more informative in that it considers rare
vents, not just average properties. Typically one defines
variety of discrete states, and the rates or probabili-

ies of transition between the states. Often the different
tates of a phenomenon of interest can be represented

s a Markov process. In a Markov process, the system
asses through the defined states in discrete steps with
given set of transition probabilities. The possibilities

or where the system will go next, and the chance it will

ig. 2. Illustration of the discrete system incorporated with DNA-bit switchin
NA-bit state is shown on the top, with the Brownian mutagen (BM) represent

fter 3 step-moves. The BM switches a DNA-bit each visit, so those DNA-bit
s 90 (2007) 870–880 873

“select” a particular option, depend only on where the
system is at the moment (i.e., its present state) rather
than on how it got there (its history). This type of anal-
ysis can in principle give the chance that the system is
in a given state as a function of time or other key vari-
ables. However, utilizing this approach often requires
a detailed understanding of individual states and tran-

sitions, which is not always available. As the system
complexity increases, the definition of all the relevant
states and the mathematical analysis of all the transitions
between them can become daunting. The results will

g processes for 1D and switching rate q = 1. The initial 100% normal
ed by the filled circle. From the top, we show a possible configurations
s visited an even number of times are restored to their original value.
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be probabilities of discrete events, rather than average
properties.

We now look at a system of one-dimensional (1D)
chain of the DNA-bits (Fig. 2). The position of each
DNA-bit is labeled by “x” and that of a mutagen by a
lattice vector R(t). The DNA-bits are described by the
variables σx which may take the values “1” or “−1”. The
bit variables encode the information about the status of
the nucleotide sequences for the transition creation pro-
cess. As we stated above, normal DNA-bits are denoted
by “1” and abnormal DNA-bits by “−1”. The mutagen
has a probability p for moving to one of its two near-
est neighbor sites in a time step δt. After making such
a jump, there is a probability q that the DNA-bit on the
site departed from is switched. As known, parameters are
the variables which, based on the theoretical analysis, are
expected to influence the outcome of interest. In some
cases, values of the parameters are known from prior
experiments, and therefore these values can be fixed. In
other cases, the values of the parameters are unknown or
could reasonably be expected to vary over a known range.
In this case, the parameters are adjustable. The greater
the excess of independent experimental data points over
adjustable parameters, the more valid the experimental
confirmation of the theory. Starting with the initial con-
dition that all bits are “1”, we monitor the time evolution
of the numbers of the abnormal “−1” and normal bits
“1” for the different situations which shall be specified
later.

To mathematically model the stochastic mutagenesis,
we write the temporal probability distribution P(R, {σx},
t) which is the probability that at time t, the mutagen is
at position R(t) and the DNA-bits have values given by
the set, {σx}. This distribution evolves according to a
master equation (Gardiner, 1985) of the form

P(R, {σx}, t + δt)

=(1 − p)P(R, {σx}, t)+p(1−q)

2d

∑
l

P(R + l, {σx}, t)

+pq

2d

∑
l

P(R + l, . . . ,−σR+l, ..., t) (1)

where l represents the two orthogonal lattice vectors or
go-left and go-right vector (which have magnitude l). In
principle one can solve this system by the use of linear
difference equations. This approach would suffer from
having a too large of a number of degrees of freedom. For

the case of Brownian mutagen, we focus on the specific
case where p = 1 and q = 1.

An alternative continuum description was obtained
by viewing the process as a stochastic cellular automa-
s 90 (2007) 870–880

ton (SCA). The process is then defined in terms of the
position R(t) of the BM. Each time step the agent makes a
random jump to one of its nearest neighbors and in which
the bit at the site it leaves behind definitely switches. This
corresponds to setting p = q = 1. Let us denote a randomly
chosen unit lattice vector by l(t), and the time-dependent
value of the spin at site x by σx(t). Then we have

R(t + δt) = R(t) + l(t), (2)

and

σx(t + δt) = σx(t)(1 − 2δx,R(t)) (3)

We are interested in a continuum limit of these two
equations. In this limit, the first equation becomes the
Langevin stochastic equation for the random walk,

dR

dt
= ξ(t), (4)

where ξ(t) is an uncorrelated Gaussian random variable
with zero mean (i.e., ξ(t) is a white noise process). The
correlator of ξ(t) is given by

〈ξ(t)ξ(t′)〉 = Dδ(t − t′), (5)

where δ is the Dirac delta function and D is the diffusion
constant. 〈· · ·〉 indicates an average over the noise (or
equivalently the paths of the agent). The agent is chosen
to reside initially at the origin.

The equation governing the evolution of the DNA-bit
density denoted by φ is described by

∂tφ(x, t) = −λφ(x, t)δ(x − R(t)), (6)

where λ is a phenomenological parameter which
describes how strongly the DNA-bit density is coupled
to the BM. It is the coarse-grained version of σ. Taking
an initial condition φ(x, 0) = 1 for all x and straightfor-
ward integration of Eq. (6) gives the explicit functional
solution

φ(x, t) = exp[−λ

∫ t

0
dt′δ(x − R(t′)). (7)

We will now use the stochastic solution of local DNA-
bit density to calculate several interesting quantities. The
simplest quantity to consider is the mean local DNA-bit
density given by

b(x, t) = 〈φ(x, t)〉 =
∞∑

n=0

(−λ)nχn(x, t), (8)
where χ0(x, t) = 1 and for n > 0,

χn(x, t) = 1

n!

〈[∫ t

0
dτ δ(x − R(τ))

]n〉
. (9)
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t can be shown that

n(x, t) =
∫ t

0
dτ1

∫ τ1

0
dτ2· · ·

∫ τn−1

0
dτn g(0, τ1 − τ2)

×· · · × g(0, τn−1 − τn)g(x, τn), (10)

here g(x, t) = (2πDt)−1/2 exp(−x2/2Dt) is the probabil-
ty density of the random walk. Eq. (10) is an n-fold
onvolution. Therefore, if we apply the temporal Laplace
ransform, we get (for n > 0)

˜ n(x, s) ≡
∫ ∞

0
dt e−stχn(x, t) = 1

s
g̃(0, s)n−1g̃(x, s),

(11)

here

˜ (x, s) = 1

(2DS)1/2 exp

[
−

(
2S

D

)1/2

|x|
]

. (12)

here g̃(x, s) is the Laplace transform of the diffusion
quation Green function.

Summing over these function as given in Eq. (6) we
nd

˜(x, s) = 1

s

[
1 − λg̃(x, s)

1 + λg̃(0, s)

]
. (13)

This exact result allows one to extract a great deal of
tatistical information about the process. First, one can
imply invert the Laplace transform to find the average
ocal DNA-bit density (or average density of switching
elative to 1/2) as a function of x and t. The explicit forms
re given as

(x, t) = erf

[ |x|
(2Dt)1/2

]
+ exp

(
λ|x|
D

+ λ2t

2D

)

×erfc

[
λ
( t

2D

)1/2
+ |x|

(2Dt)1/2

]
(14)

here erf(z) and erfc(z) are the error function
Abramowitz and Stegun, 1972). Considering the long
ime behavior of the above expression, we find that the
verage local DNA-bit density at the origin (x = 0) decays
symptotically as

(0, t) =
(

2D

πλ2t

)1/2 [
1 + O

[
D

λ2t

]]
. (15)

e note here that the continuum solution has the impor-
ant property that 〈φ(x, t; λ)n〉 = 〈φ(x, t; nt)〉. This allows
s to utilize the exact solution to reconstruct the probabil-

ty density for the local DNA-bit density. Theoretically,
t can be proved that the average DNA-bit density by N
gents ≡bN(0, t) is proportional to b(0, t)N, i.e.,

(N)(0, t) = [b(1)(0, t)]
N = tN/2, as t 
 1. (16)
s 90 (2007) 870–880 875

Another interesting quantity which may be extracted
from b(0, t) is the global switched DNA-bits, B(t),
defined as

B(t) =
∫

dx[〈b(x, 0)〉 − 〈b(x, t)〉].

This quantity obeys the exact relation

dB(t)

dt
= λb(0, t). (18)

We find that asymptotically B(t) ≈ (t)1/2, independent of
the coupling. In other words, the total amount of disorder
created by a single BM on average increases as t1/2 that
is rather independent of the coupling between the BM
and the DNA-bits for large time.

We now consider the probability distribution function
P(b, x, t) of the local corrupted bit density. This P func-
tion will provide the information about the time evolution
of the probability distribution that describes the local
corruption behavior. Obviously, at the very early times,
the peak of the distribution is supposed to occur in the
vicinity of the origin. The complete analytic structure of
b(x, t; λ) is needed to reconstruct the distribution func-
tion P. This suggests that by knowing the first moment
of the corruption density, we can generate the higher
moment. Therefore, we can reconstruct the probability
density function. We define P via

P(b, x, t) = 〈δ(b − bR(x, t)〉 (19)

where bR(x, t) is the stochastic field solution given in Eq.
(15). We can express the δ function using a frequency
integral, and then expand it in powers of the field as
follows:

P(b, x, t) =
∫ ∞

−∞
dω

2π
e−iωb〈eiωbR(x,t)〉

=
∫ ∞

−∞
dω

2π
e−iωb

∞∑
n=0

(iω)n

n!
〈bR(x, t)n〉

=
∫ ∞

−∞
dω

2π
e−iωb

∞∑
n=0

(iω)n

n!
〈b(x, t; nλ)〉.

(20)

We next take the Laplace transform of b(x, t; nλ). From
Eq. (12) we have

b(x, s; nλ) = 1

s

[
1− nλg̃(x, s)

1 + nλg̃(0, s)

]
= g̃(0, s) − g̃(x, s)

sg̃(0, s)
+ g̃(x, s)

sg̃(0, s)[1 + nλg̃(0, s)]
. (21)

The first term is handled as it is independent of n. Thus,
the sum over n for this yields a factor eiω which leads to
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the factor δ(1 − b) when integrated over ω. The details
of how to perform the sum over n for the second term,
we refer to a reference by Newman and Triampo (1999).
The final result for P̂(b, x, s) is

P̂(b, x, s) = ĝ(0, s) − ĝ(x, s)

sĝ(0, s)
δ(1 − b) + ĝ(x, s)

ĝ(0, s)2

1

sλb

× exp

[
− 1

λĝ(0, s)
ln

(
1

b

)]
. (22)

To this end, we need the explicit form for ĝ(x, s) which
is given by Eq. (11). Inserting this into Eq. (22) and
inverting the Laplace transform, we have our final result

P(b, x, t) = δ(1 − b)erf

[ |x|
(2Dt)1/2

]
+ 1

(πt)1/2

1

λ̃b

× exp

{
−

[ |x|
(2Dt)1/2 − ln b

2λ̃t1/2

]2
}

(23)

where erf(z) is the error function where λ̃ = λ/(2D)1/2.
In particular, the probability distribution for the average
bit corruption density at the origin takes the form

P(b, 0, t) = 1

(πt)1/2

1

λ̃b
× exp

{[
− ln (b)2

4λ̃2t

]}
(24)

which is a log–normal distribution and where we have
defined λ̃ = λ/

√
2. This indicates the extreme nature of

the fluctuations in the system. For instance, the typical
value of the magnetization density can be found from the
above expression to decay exponentially.

For the asymptotic behavior of b(0, t) as b(0, t) ≈
1/

√
t, P(b, 0, t) in Eq. (24) becomes

P(b, 0, t) = 1√
πλ̃

× exp

{
− 1

4λ̃2t

[
ln

1√
t

]2
}

≈ exp

{
− (ln t)2

t

}
= exp

{
− 1

144t
− 1

6t2

− 3

4t3 + 26

9t4 + O

(
1

t5

)}
≈ exp

{
−1

t

}

= exp

{
−

(
1√
t

)2
}

= exp{−b2} (25)

which is a normal distribution and where O(1/t5) is
the correction to the order of 1/t5. We now claim that
log–normal distribution approaches normality when t is

infinitely large. Finally, we analyze the effects of many
BM’s within the system. We assume the BM’s to be
non-interacting, i.e., they are unaware of each other’s
immediate presence. The non-trivial statistics reside in
s 90 (2007) 870–880

the fact that the mutating effects of the BM’s statisti-
cally interact via the overlapping of the BM histories.
As we have already seen, a single BM interferes with
the previous switched DNA-bit it has created, such that
the amount of mutating does not simply increase lin-
early in time. This effect is more severe when more than
one BM is present, as each BM can disturb the mutation
that another BM has previously created. We measure
the strength of this interference via a quantity called the
“mutation efficacy” of the mutagents, defined as

σN ≡ lim
t→∞

BN (t)

B(t)

where BN(t) is the average global mutation created by
N mutagents. If the BM’s were truly independent (in
terms of the mutation they create), then we would expect
σN ∝ N.

3. Monte Carlo numerical results and discussion

Our aim in this section is to show the validity of our
predicted results obtained in the previous section. To do
so, we have performed the Monte Carlo simulations of
the discrete model defined in Section 2. All results are
obtained for a 1D chain of DNA-bits which at each site
can take either the value 1 (normal) or −1 (abnormal).
The chain length is considered negligible, as long as one
ensures that the BM never touches the system bound-
aries in any of its realizations up to the latest time at
which data is extracted. Thus, the system is infinitely
large. We performed an average over realizations (or
runs) with each run starting with the same initial config-
uration; namely all DNA-bits are normal. The DNA-bit
at the starting point has value = 1 as shown in Fig. 2,
then the BM are introduced to the starting point (origin).
At each Monte Carlo step, the BM randomly walks to
either one of its two neighboring sites and switches the
DNA-bit of visited site before leaving. We let the BM
mutate the system independently with the consequence
that multiple occupancies are allowed.

We have focused on the local DNA-bit density at the
origin so we measured the average altered DNA-bits den-
sity at the origin where the BM started switching the
system denoted by b(0, t). To investigate the accumu-
lated DNA alteration, we measure the total number of
abnormal DNA-bits B(t) versus time. Then we defined
a coarse-grained bit corruption over a patch contain-

ing 20 bits representing the bit at the origin to measure
the probability distribution of the local DNA-bit den-
sity, P(b, 0, t). The 20 bit patch size is chosen because,
computationally, this is primarily as a consequence of
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he optimization of the simulation technique. This is
echnically to compromise the length and time scale of
M versus the DNA global alteration time scale. If the
atch size is too small (it has been tested), it would not
uite allow us to obtain the data for the reasonably good
nough histogram data resulting in the good quality prob-
bility distribution. In contrast, if the patch size is too
arge, it could lead to the scenario where the BM would
e spending to long time in just one site in unreasonable
arge frequency to alter each DNA coarse-grained bit.
his situation could lead to the local change as unrealis-

ic “over-express” of a spontaneous or one time-step of a
ingle DNA in relation with global change that is not in
he reasonable time scales. Biologically, this optimal bit
atch size might imply some biological counterparts, i.e.,
ow could each BM be able to induce DNA-alteration.
n addition, this optimal size might reflect the BM capa-
ility or efficiency to alter DNA. Moreover, it is known
hat several factors like the sensitivity of each genetic
ite to BM, specificity of BM/DNA matching, the fluc-
uation of the response due to either “on or off” genes or
he inhomogeneity of DNA array landscape, etc.

In addition, the BM is initially allocated evenly on
oundary of the patch to avoid the internal decimation
y the transient motion of the BM. Lastly, we consider
he situation of more than one BMs. We have measured
he asymptotic long time value of the ratio between the
umber of the abnormal DNA-bit when many agents are

resent and that when only one agent is present. It is
enoted by σN.

In Fig. 3, the plot between the local DNA-bit density
nd time is shown. b(0, t) can be viewed as being the

ig. 3. The log–log plot of local DNA-bit density at the origin b(0, t)
s. time, d = 1, p = 1 and q = 1 due to 1, 2, 3, 4, 5, 6, 16 and 32 BMs. The
rrow directs the increment of number of BMs. The dash lines have
lope −0.4992, −1.0104, −1.4999 and −1.9487, respectively, along
he arrow direction and show the range of time in which the exponent
s extracted.
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frequency of the local changes of DNA-bit caused by
the random or stochastic induction of the mutagen(s).
It is found that b(0, t) ≈ √

t for one BM and b(N)(0,
t) = [b(1)(0, t)]N = tN/2 for N > 1 which are in good agree-
ment with the analytic prediction. This indicates that b(0,
t) depends sensitively on the number of BMs in terms of
the overlap of the paths of different walkers and how
often the BMs have visited the origin. The decay of b(0,
t) due to N BAs is not linearly proportional to b(0, t)
due to 1 BM but instead it varies as the power N of b(0,
t). For N = 2, it gives b(0, t) ≈ t. This result is consistent
with observations that the between-population genetic
variance (Roychoudhury and Nei, 1988; Lynch and Hill,
1986), and that the cumulative selection response from
mutation (Hill, 1982) asymptotically increase linearly
with time. It should be pointed out that the origin is
strongly altered by the multiple BMs since all of the inde-
pendent BMs always return to the origin and switched
its DNA-bits. In the process of N agents which are non-
interacting, they will interfere strongly with each other.
In other words, the overlap of their histories is found.
When time is infinitely large, b(0, t) approaches 0. It
implies 50% chance of finding the site to be normal or
abnormal. This agrees with the time limit of b(0, t). The
fluctuation at this equilibrium is relatively large com-
pared to that in the scaling regime. This results from
thermal fluctuation (Burgess, 1969).

Fig. 4 shows the probability distribution P(b, 0, t) of
b(0, t). In the early time regime, the simulated proba-
bility distribution is log–normal. The distribution curve
has a robust tail for larger value of average DNA-bit den-
sity. This reveals the extreme fluctuation at the origin and
the high probability that the origin will only be slightly

mutated. The fact that BM on 1D lattice always returns
to the origin (Hughes, 1995) is critical for this event. At
large time the distribution has completely changed from

Fig. 4. The simulated probability distribution of a local DNA-bit den-
sity at the origin b(0, t), d = 1, p = 1 and q = 1 due to 1 BM. In the early
time regime when the simulated probability distribution is log–normal
(Eq. (24)) and at large time the distribution has completely changed
from log–normal to normal.
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log–normal to normal. The peak occurs with a probabil-
ity of 0.1275. An important feature that this distribution
unambiguously points out is that the realizations where
the DNA-bits at the origin will be half abnormal and half
normal will have the highest probability of occurrence.
The distribution approaches normality as time proceeds
with the highest probability occurring at b(0, t) = 0. This
means that the origin is steadily altered. It is expected that
the distribution approaches a normal distribution quicker
when there are more than one BM. The peak of the nor-
mal distributions remains at the same place. In contrast
to b(0, t), the characteristics of the normal distributions
are independent of N and time.

In Fig. 5, we present the results of the numerical
simulations which gives the values of σN. We have per-
formed numerical simulations of the many mutagens
system in order to test the prediction result. The micro-
scopic rule we use is that there is no hard-core exclusion
between the mutagens, and that for each time step the
N mutagens are in turn moved to a randomly chosen
nearest neighbor site. A DNA-bit which is occupied by
two mutagens, say, will thus (for q = 1) be switched
twice in that time step. We observe the evolution of
the ratio of the average global DNA-bit switching for
N agents as compared to one agent for d = 1. Asymp-
totically, this ratio is the mutating efficacy by definition.
Results are shown for N = 2, 3, and 4. The curves are
asymptotic to constants as expected. As we see, σN

does not increase linearly as the number of mutagens

is increased. From the stochastic point of view, this
implies that there is a degree of interference between
the mutagens. In the process of N BMs which are
non-interacting, they will interfere strongly with each

Fig. 5. Plot ofσN vs. number of BMs. It shows thatσN does not increase
linearly as the number of mutagens is increased and, from the stochastic
point of view, this implies that there is a degree of interference between
the mutagens.
s 90 (2007) 870–880

other. In other words, the overlap of their histories is
found.

Lastly, we suggest that our theoretical results can
be tested, at least in principle, directly by experiments.
Recently, it was shown that CIN and MIN can be
introduced in cancerous cell lines through specific muta-
genesis (Bardelli et al., 2001). In addition, Greenman et
al. (2007) and Haber and Settleman (2007) have shown
large scale analysis of DNA mutations across cancer
arrays. While an in-depth study of dynamics above the
error threshold along with careful consideration of the
enzymatic interactions, both subjects of future research,
would be necessary to rigorously quantify this state-
ment particularly to non-equilibrium aspects. This is
one example of a quantifiable and testable hypothesis
that can be used to experimentally test our theoretical
work. Theoretical modeling frequently uses simplifying
assumptions. Simplifying assumptions eliminate com-
plexities which may be peripheral to the issue under
consideration, allowing a focus on key features of a com-
plex biological system. For example, most models of
genetic instability assume that the rate of genetic change
is constant at any location in the genome, even though
there is evidence of mutation “hot spots” which violate
this assumption (Schaaper and Dunn, 1991). In deter-
mining whether this simplifying assumption impacts the
results when modeling genetic change in carcinogenesis,
one would need to know whether mutation “hot spots”
exist at key loci within cancer-associated genes.

4. Implication to genetic instability in cancer and
conclusion

In this work, we have modeled the stochastic kinetics
of the spontaneous mutation induced by nucleotide tran-
sition as a problem of a mutagen. The dynamics in the
model is to mimic the mutagenesis due to the tautomeric
shift which may occur when a mutagen interacts with
one of the bases in the DNA chain. The “tautomers” are
created when the interaction causes some of the elec-
trons in the base to shift their positions. To understand
how this model may feature the real world phenom-
ena, we have used both analytical model and computer
simulation techniques. Analytically, we have set up the
master equation and solved for local DNA-bit density,
global abnormal DNA-bits, and the probability distri-
bution function to describe the non-equilibrium nature
of mutagenesis. To confirm the theoretical findings, we

have performed computer simulations by applying some
stochastic cellular automata rules to a DNA-bit system.
Evidently, the model is non-trivial since the values of
DNA-bits depend very sensitively on the path of the
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M, i.e., how often the BM has visited and switched
he DNA-bits. We find that the local DNA-bit density,
(0, t) ≈ 1/

√
t the global DNA-bit B(t) ≈ √

t, proba-
ility density function P(b, 0, t) is log–normal, and also
or the case of many mutagens, σN does not increase
inearly as the number of the BMs increases. Instead, it
ncreases more slowly due to interference effects occur-
ing along the path of the mutagens. Our work may relate
o genetic instability in cancer.

Genetic instability is a hallmark of human cancers
Lengauer et al., 1998; Loeb, 2001). Genetic changes
hich are required in carcinogenesis are divided into two
ery broad classes: those which are dominant, requir-
ng alteration of only one gene copy to contribute to a
remalignant or malignant phenotype, and those which
re recessive, requiring alteration of both gene copies
o contribute to a premalignant or malignant pheno-
ype. Genetic alterations can happen in stem cells and
ifferentiated cells. If those genetic alterations affect
enes involved in cellular proliferation, cell-cycle reg-
lation or apoptosis, then neoplastic growth might be
nitiated (Levine, 1993; Mitelman et al., 1994; Kinzler
nd Vogelstein, 1998; Lengauer et al., 1998; Knudson,
001; Hahn and Weinberg, 2002). The alteration of one
ene, however, does not suffice to give rise to full-blown
ancer. For progression towards malignancy and inva-
ion, further mutational hits are necessary (Knudson,
001). Hence the risk of cancer development does not
nly depend on mutations initiating tumourigenesis, but
lso on subsequent mutations driving tumor progression.

One point that we wish to make is that biological
rocesses such as mutagenesis can be modeled by a sim-
le model with reasonable assumptions. Although for
ery complex biological system, perhaps such simple
odel may not be valid or can only be partially mod-

led. To date, the number of theoretical investigation of
he kinetics of mutagenesis is scant, which is one of the
easons we have modeled this problem. This work gives
n example of how an interaction between a living sys-
em and its environment can be described as a stochastic
rocess. This work can also be viewed as a problem
n non-equilibrium disordering. Here, we started with
n initially ordered configuration and by applying local
pdate rules (the dynamics), we can tract the time evolu-
ion of the degree of disordering. A more detailed model
ould require, for example, a complete description of

he tautomeric shifts, in order to understand the kinetics
f mutagenesis more fully. This may involve quantum

echanics theory since one would need to know position

f the localization of the electrons in the bases as they
hift from a nitrogen ion to a hydrogen ion. It should be
ointed out that we have not addressed a very important
s 90 (2007) 870–880 879

issue, the survivability of the mutation. At what degree
of mutagenesis is the DNA sequence not able to repli-
cate itself. In order to correct the errors which occur
during the DNA synthesis, DNA polymerase checks the
newly-synthesized DNA strand and corrects most of
the incorrect bases (Kornberg, 1974; Watson, 1970). It
was shown experimentally that this “proof-reading” step
reduces the number of mutations by a factor of 102 to
103. Such significant reduction should be also considered
while comparing the calculated and observed frequen-
cies of the mutations. Therefore, the frequency of the
spontaneous GC → AT before the checking step should
be in the approximate range of 10−6 to 10−8.

Also we would like to note that the values of the
predicted non-equilibrium quantities are sensitive to the
level of calculations (level of theory and the basis set),
which suggests that a higher-level calculations should
be also performed. So far, computational calculations
of the nucleotide sequences done within the frame-
work of the “human genome” have proven to be useful
since they provide deeper insight into the principle of
genome organization and function. Much more work
has to be done to close the gap between the complexi-
ties of real biological entities and grossly oversimplified
mathematical (modeling) descriptions used to study bio-
logical and medical systems. The increase appreciation
of stochasticity in biological research is observed in
all scales of biological systems (Kurakin, 2005, 2006;
Xie and Lu, 1999; Dundr et al., 2002; Kimura et al.,
2002; Essers et al., 2002; Sirakoulis, 2004; Hoogstraten
et al., 2002). We believe our model will complement
detailed stochastic modeling by providing a set of pow-
erful mathematical tools and concepts to visualize DNA
alteration.
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